Classification Of Carbohydrates

Carbohydrates, also known as saccharides, are classified according to the number of single carbohydrate molecules in each chemical structure. Carbohydrate compounds having just one carbohydrate molecule are called monosaccharides; compounds with two carbohydrate molecules are called dissarcharides; and those compounds containing more than two carbohydrate molecules are named polysaccharides. All carbohydrates either are monosaccharides or can be hydrolyzed (broken down) into two or more monosaccharides.

For further understanding of these different classifications of carbohydrates, the monosaccharides and disaccharides can be grouped together and compared with the polysaccharides. This can be done because monosaccharides and disaccharides have certain things in common.

For one, they are both water soluble. In addition, they have a sweet taste and a crystalline structure. The monosaccharides and disaccharides are called sugars and all share the suffix, -ose, meaning sugar.

Polysaccharides, in contrast to mono- and disaccharides, are insoluble in water, do not taste sweet and do not form crystals. Also, they do not share a suffix and have no group name (such as sugars, in the case of mono-arid disaccharides). They are sometimes called starches, but this is technically incorrect because there are many other classifications of polysaccharides besides starches (cellulose and glycogen being two and dextrin being another).


These are the only sugars that can be absorbed and utilized by the body. Disaccharides and polysaccharides must be ultimately broken down into monosaccharides in the digestive process known as hydrolysis. Only then can they be utilized by the body. Three monosaccharides are particularly important in the study of nutritional science: glucose, fructose and galactose.

Glucose (also known as dextrose or grape sugar)

This monosaccharide is the most important carbohydrate in human nutrition because it is the one that the body fuses directly to supply its energy needs. Glucose is formed from the hydrolysis of di- and polysaccharides, including starch, dextrin, maltose, sucrose and lactose; from the monosaccharide fructose largely during absorption; and from both fructose and galactose in the liver during metabolism.

Glucose is the carbohydrate found in the bloodstream, and it provides an immediate source of energy for the body’s cells and tissues. Glucose is also formed when stored body carbohydrate (glycogen) is broken down for use.

In the plant world, glucose is widely distributed. It is found in all plants and in the sap of trees. Fruits and vegetables are wholesome food sources of glucose. It is also present in such unwholesome (to humans) substances as molasses, honey and corn syrup.

Fructose (also known as levulose or fruit sugar)

Fructose, a monosaccharide, is very similar to another monosaccharide, galactose. These two simple sugars share the same chemical formula; however, the arrangements of their chemical groups along the chemical chain differ. Fructose is the sweetest of all the sugars and is found in fruits, vegetables and the nectar of flowers, as well as in the unwholesome (to humans) sweeteners, molasses and honey. In humans, fructose is produced during the hydrolysis of the disaccharide, sucrose.


Galactose differs from the other simple sugars, glucose and fructose, in that it does not occur free in nature. It is produced in the body in the digestion of lactose, a disaccharide.


Disaccharides, on hydrolysis, yield two monosaccharide molecules. Three particular disaccharides warrant discussion in a lesson on nutritional science: sucrose, maltose and lactose.



The disaccharide, sucrose, consists of one molecule of each of two monosaccharides—glucose and fructose. Sucrose is found in fruits and vegetables and is particularly plentiful in sugar beets (roots) and sugarcane (a grass). Refined white and brown sugars are close to 100% sucrose because almost everything else (including the other kinds of sugars present, the vitamins, the minerals and the proteins) have been removed in the refining process.

Maple syrup and molasses are, like refined sugars, unwholesome sweeteners; both contain over 50% sucrose. It almost goes without saying that any foods, so-called, containing significant amounts of refined sugar are high in sucrose.

Maltose (also known as malt sugar)

This disaccharide, unlike sucrose, is not consumed in large amounts in the average American diet. It is found in malted cereals, malted milks and sprouted grains. Also, corn syrup is 26 percent maltose and corn sugar is 4 percent maltose. None of these “foods” is wholesome, with perhaps, the exception of sprouted grains.

Maltose occurs in the body as an intermediate product of starch digestion. (Starch is a polysaccharide.) When maltose is hydrolyzed, it yields two molecules of glucose.

Lactose (also known as milk sugar)

This disaccharide is found only in milk. Human milk contains about 4.8 g per 100 ml and cow’s milk contains approximately 6.8 g per 100 ml. When lactose is hydrolyzed it yields one unit of the monosaccharide glucose and one unit of the monosaccharide galactose. The enzyme lactase is needed to digest lactose, and this enzyme is not present in most, if any, people over age three. This is one of the many reasons why milk is an unwholesome food for people over three years of age.


Like the disaccharides, the polysaccharides cannot be directly utilized by the body. They must first be broken down into monosaccharides, the only sugar form the body can use.

Polysaccharides contain up to 60,000 simple carbohydrate molecules. These carbohydrate molecules are arranged in long chains in either a straight or in a branched structure. There are four polysaccharides that are important in the study of nutritional science: starch, dextrin, glycogen and cellulose.


Starch is abundant in the plant world and is found in granular form in the cells of plants. Starch granules can be seen under a microscope and they differ in size, shape and markings in various plants. The starch granules of wheat, for example, are oval-shaped; whereas the starch granules of corn are small, rounded and angular.

These starch granules are laid down in the storage organs of plants—in the seeds, tubers, roots and stem pith. They provide a reserve food supply for the plant, sustain the root or tuber through the winter and nourish the growing embryo during germination.

Most starches are a mix of two different molecular structures, amylose and amylopectin. The former has a linear structure and the latter has a branched or bushy structure. The proportion of the two fractions varies according to the species of plant. For example, potato starch and most cereal starches have approximately 15-30% amylose.

But the waxy cereal grains, including some varieties of corn plus rice and grain sorghum, have their starch most entirely as amylopectin. The starches in green peas and in some sweet corn varieties are mainly amylose.

The polysaccharides, as mentioned earlier, are not water soluble as are the mono- and disaccharides. Though not water soluble, starches can be dispersed in water heated to a certain temperature. The granules swell and gelatinize. When cooled, this gelatin sets to a paste.

The jelling characteristics of starches are considered to result from the amylose present, while amylopectin is considered to be responsible for the gummy and cohesive properties of the paste.


There are several “varieties” of this polysaccharide. Dextrins are most commonly consumed in cooked

starch foods, as they are obtained from starch by the action of heat. Dextrins are intermediary products of starch digestion, also, and are formed by the action of amylases on starches. They render the disaccharide maltose on hydrolysis.


Glycogen is the reserve carbohydrate in humans. It is to animals as starch is to plants. Glycogen is very similar to amylopectin, having a high molecular weight and branched-chain structures made up of thousands of glucose molecules. The main difference between glycogen and amylopectin is that glycogen has more and shorter branches, resulting in a more compact, bushlike molecule with greater solubility and lower viscosity (less stickiness or gumminess).

Glycogen is stored primarily in the liver and muscles of animals. About two-thirds of total body glycogen is stored in the muscles and about one-third is stored in the liver.


Like starch and glycogen, cellulose is composed of thousands of glucose molecules. It comprises over 50% of the carbon in vegetation and is the structural constituent of the cell walls of plants. Cellulose is, therefore, the most abundant naturally-occurring organic substance.

It is characterized by its insolubility, its chemical inertness and its physical rigidity. This polysaccharide can be digested only by herbivores such as cows, sheep, horses, etc., as these animals have bacteria in their rumens (stomachs) whose enzyme systems break down cellulose molecules. Humans do not have the enzyme needed to digest cellulose, so it is passed through the digestive tract unchanged.

The Role Of Carbohydrates In The Body

Five subheadings follow in this lesson subdivision, but there is actually only one basic role of carbohydrates in the human diet: to supply energy. It should always be kept in mind that carbohydrates or calories alone cannot adequately supply our energy needs, for we must have our carbohydrates in combination with other needs, such as proteins, water, vitamins, minerals, fats, etc.

This means that a diet of refined sugar, refined rice, flour products and other “food fragments,” though it supplies calories, cannot satisfactorily comprise the bulk of anyone’s diet. A person on such a diet would suffer many problems, for the organism is not capable of living long or well on bare carbohydrates alone. They must be obtained in combination with the other essential food factors to be truly useful in the overall energy production and nutrition of the organism.

Carbohydrates Supply Energy

The body uses carbohydrates directly from the monosaccharide glucose. Glucose is in the blood and extracellular fluids (lymph) and can be made from glycogen. Glycogen is stored in the liver and muscles and in smaller amounts in the other organs and tissues of the body. Energy is derived from glucose by the splitting of the glucose molecules into smaller compounds and oxidizing these to form water, which frees quite a large amount of energy.

When carbohydrates needed for the functioning of the central nervous system, the muscles and the other body systems and functions are insufficient in the diet (as during a fast or on a weight-loss diet), stored adipose tissue (fat) is broken down into glucose to make up the caloric deficit.

Some amino acids, instead of being used to make proteins, are deaminated and used as carbohydrates to supply energy. The formation of glucose from amino acids is called gluconeogenesis. This phenomenon enables one to maintain normal blood sugar levels during a fast.

Practically the entire fat store of the body can be used up without detriment to health. Because of this fact, and the fact that the body can also create carbohydrates from amino acids, fasting is a very safe practice from the standpoint of maintenance of normal blood sugar levels, of normal neurological functioning and of meeting all the body’s various energy needs.

Carbohydrates Provide Fuel for the Central Nervous System

Nerve cells are very dependent upon glucose for their functioning. According to physiology texts, the glycogen in nervous tissues remains constant and is not mobilized for conversion to glucose. When insufficient carbohydrates are consumed to meet the energy needs of the central nervous system, besides the occurrence of gluconeogenesis, another phenomenon occurs during a fast of three weeks or more:

The cells of the central nervous system adapt their metabolic apparatus to use ketone bodies in place of glucose. (Ketone bodies are substances synthesized by the liver as a step in the metabolism of fats.) The nerve cells obtain their needed functional energy from these metabolites. This explains why patients with blood sugar problems (diabetes or hypoglycemia) do not suffer ill effects during a fast. In fact, they benefit by fasting. (This topic will be discussed in depth in a later lesson.)

Carbohydrates Provide Fuel for the Muscular System

Carbohydrates provide the major fuel for muscular exercise. Fats and proteins can be used only indirectly—by first being converted into carbohydrates. For this reason, a proper diet should consist primarily of carbohydrates—not primarily of proteins and fats as are commonly consumed in conventional nonvegetarian (and some lacto- and lacto-ovo vegetarian) diets.

The muscles use the glycogen present in the muscle cells and glucose in the bloodstream. However, glycogen from the muscles is more efficiently used than glucose because the breakdown of glycogen for use does not require energy input at the time, whereas a certain amount of energy is used to bring the blood sugar into the metabolic system of the muscles. (It does require energy to build up the glycogen supply in the first place, but this happens during periods of rest when plenty of energy is available.)

If a diet high in carbohydrates is not consumed, tremendous muscular exertion over long periods and/or extreme and prolonged stress (as being stranded for weeks in Antarctica) can result in accelerated breakdown of body protein and stored body fat. The protein breakdown is evidenced by an increased excretion of nitrogen in the urine, and the fat breakdown is evidenced by a rise in the level of ketone bodies in the urine and in the blood. The blood sugar level is simultaneously lower.

The body works much more efficiently from carbohydrate intake than from broken-down body protein and fats because protein and fat molecules, when used as fuel, yield less than their total caloric value in the form the muscles can use. The remaining portion is used for the conversion of these molecules into suitable fuel. This conversion takes place in the liver and adipose tissue, which supply the body’s organs with fuel via the bloodstream.

The fact that the body can and will use body fats and proteins when the supply and stores of blood sugar and glycogen are not great enough to meet the demand for energy exemplifies two facts: 

  1. The organism is provident. It has many back-up arrangements for survival in emergency situations when sufficient carbohydrates are not available. 
  2. An appropriate balance between supplying body needs (such as rest and carbohydrates) and expending energy (muscular, nervous or other) should be strived for to attain optimum health and well-being.

It has been found that people who are accustomed to doing prolonged or strenuous work have larger stores of glycogen (and of phosphate esters) in their muscles than those not accustomed to much physical activity. It is, therefore, beneficial to do regular vigorous exercise to increase our storage of muscle glycogen. We will then be prepared to expend energy for longer and more strenuous exercise—whether it be in an emergency or in pursuing pleasure.

Carbohydrates Supposedly Spare Proteins

Physiology textbooks refer to this so-called role or function of carbohydrate in the body as “its protein-sparing action.” However, it is incorrect to attribute action (other than chemical action) to carbohydrates or other inanimate substances. Besides, “sparing protein” is not a function or role of carbohydrates at all. Carbohydrates simply furnish our fuel or energy needs—and nothing more.

What is being said in the textbooks is that proteins consumed will be used for tissue building and maintenance rather than being used as an emergency source of energy as long as the carbohydrate intake is sufficient. This is true, but it is only another way of saying that carbohydrates are the primary and most efficient source of energy or fuel and that it is best not to try to meet our fuel needs from proteins. It is stating the true fact that carbohydrates, not proteins, supply our primary nutrient needs.

“Sparing proteins” is not a separate and distinct function or role of carbohydrates any more than preventing scurvy is a separate and distinct function of vitamin C in the body. Vitamin C supplies body needs, but its role is not prevention of scurvy or of anything else.

Viewing nutrients as preventative agents of diseases is another way of saying that diseases are normal, that they are an inevitable part of life that will and must occur unless prevented by the proper nutrients. That is a backwards way of viewing health—it’s the disease approach, or the medical approach. Just as good things happen to us if we think positive thoughts and visualize success, harmony, etc., good health will exist as long as we live healthfully—and that includes consuming the correct amounts of the foods to which we were biologically adapted in nature to eat.

In short, the so-called “protein-sparing action” of carbohydrates is not only not an action, but sparing proteins is not a distinct role of carbohydrates separate from their energy-providing role.

Carbohydrates Supposedly Supply “Dietary Fiber”

“Dietary fiber” is a fairly new term coined to describe the cellulose inside plant cells. Cellulose is known to be indigestible by humans, though it is digested and used for energy by herbivores. The claims made about “the beneficial role of dietary fiber in preventing diseases” are so popular and so widely made that they are practically accepted as fact.

However, cellulose, though in fact a carbohydrate because it is utilized as such by herbivores, does not serve the role of a carbohydrate in human physiology. Because it cannot be digested and utilized by humans, it cannot provide us with energy—and providing energy is the only role of carbohydrates in human nutrition.

The above statements may come as a surprise to most readers—but read on and we’ll clarify further.

It has been observed that certain so-called primitive tribes in Africa and elsewhere who consume diets high in fiber are less likely to develop certain colon diseases and metabolic disorders than their kinsmen who live in urban areas and eat low-fiber foods similar to those consumed in so-called developed countries. Based on the high correlation between low-fiber diets and human gastrointestinal diseases, many hospitals and clinics have changed their dietary management of diverticulosis. They are experiencing good results with a diet containing more instead of less cellulose.

We do not deny that high-fiber diets are more wholesome as a rule than low-fiber diets, nor do we deny the fact that people who consume diets closer to nature and therefore higher in fiber (cellulose) have fewer gastrointestinal diseases and a lower rate of bowel cancer. What we argue against is the thinking that the fiber itself is primarily responsible for the prevention of these diseases and disorders.

Since cellulose is indigestible, it cannot be utilized by the body as a nutrient. It is simply passed through with the other wastes. Its presence or absence in the feces is insignificant. What is significant is how much and what kinds of toxins are there (and elsewhere). The ingestion of too many toxins from all sources, as well as the retention of toxic wastes produced within the body, results in diseases. The presence or absence of indigestible plant fibers does not prevent or cause diseases.

Processed, highly-refined, so-called foods (they do contain carbohydrates) do not deserve the label foods because they are not whole foods. Parts of processed foods are missing—they were removed intentionally in the refining process. (Fiber [cellulose] is one of those missing parts.) This makes them incomplete or fragmented foods. Eating fragmented foods results in problems in the body. Therefore, they should not be eaten.

Refined sugar and products containing refined sugar, as well as refined flour products, are the most salient examples of processed food fragments that produce toxic effects in the body. Being devoid of vitamins and minerals in their natural form (the only form they can be used in), these products are like drugs within the body. In addition, calcium and other minerals, as well as B vitamins, must be utilized by the body to metabolize refined products. Because the refined products are devoid of nutrients except carbohydrates, calcium is taken from the bones.

Most “civilized” diets contain cooked foods, foods not normal to humans, refined and processed foods and drugs and medications. Refined sugar, flours, white rice and processed cereals are some of the worst culprits, but there are many, many more sources of toxins in the diet. Also, incompatible food combinations result in the production of toxins in the stomach and elsewhere in the digestive tract, and these toxins also contribute to gastrointestinal disturbances and diseases.

Much more could be said about the sources of toxins within the body that result in disease, but this has been discussed in previous lessons and will also be further discussed in future lessons. For now, it is sufficient for us to explain that low-fiber diets not only lack the natural cellulose which should be left intact in the whole food, but they also contain or give rise to a host of toxins that result in disease conditions.

It is not the lack of fiber itself that causes diverticulosis and other gastrointestinal problems but the overall unwholesomeness of the foods ingested in so-called civilized society. (Of course, you should understand that what is eaten is only part of the picture and that how it’s eaten, how much is eaten, the amount of exercise, sleep, fresh air, etc., indulged are also important factors in human nutrition.)

How Carbohydrates Are Digested And Used By The Body

Introduction to Digestion

Before discussing carbohydrate digestion in particular, let’s give a little attention to digestion in general. Complete and thorough digestion of foodstuffs is extremely important for good health. A tremendous amount of toxin elimination and accumulation puts a great stress and burden upon the organism and results in a large variety and number of diseases.

This happens both directly, from the presence of accumulated toxic substances that the body was unable to eliminate, and indirectly, from a decrease in the body’s digestive capabilities due to overworking the digestive system and depleting the body’s supply of vital energy.

It is, therefore, important for us to do everything we can to insure thorough and complete digestion of all foods eaten. This can be done by eating primarily (or only) easily digested and uncomplicated foods such as fruits; by eating compatible combinations of foods; by eating moderate amounts of foods; by eating at well-spaced meals; by abstaining from drinks during or too soon before or after meals; and by refraining from eating while under stress or emotionally upset.

One of two things happens to foods that do not get thoroughly or completely digested :

  1. Sugars may ferment
  2. proteins may putrefy (rot). These processes result from bacterial activity which breaks down (decomposes) undigested or undigestible foods in preparation for their elimination from the body. 

The “trick” to, getting nourishment (nutriment) from the foods you eat is to see to it that they, get digested quickly, before the bacteria (present within every healthy digestive tract) have a chance to decompose them. The results of bacterial decomposition are toxic and do not provide nourishment. Foods that don’t digest relatively soon after ingestion will ferment or putrefy and contribute to body toxicity and disease.

Keeping the above facts about digestion in mind, let’s take a look now at carbohydrate digestion.

Salivary Carbohydrate Digestion

Disaccharides and polysaccharides must be digested before the body can use them, while monosaccharides do not require digestion. For this reason, as well as for other reasons (to be discussed in depth later in this lesson), our best source of carbohydrates is from fruits. Fruits require much less of the body’s energies and render primarily monosaccharides that, as stated, need no digestion.

Digestion is both a mechanical process (chewing) and a chemical process (enzymic actions). The class of enzymes that hydrolyze carbohydrates are broadly known as carbohydrases. We will be concerned in this lesson with carbohydrases known as amylases.

While the digestion of all types of foods (proteins, carbohydrates, fats, etc.) begins in the mouth with the mechanical process of mastication, certain carbohydrates—namely, starches and dextrins—are the only food types whose chemical digestion begins in the mouth. Here an enzyme known as salivary amylase or ptyalin, secreted by the parotid glands, is mixed with the food during the chewing process and begins the conversion of glycogen, starch and dextrins into the disaccharide maltose.

What happens when the starches, dextrin, and glycogens that were not converted to maltose in the mouth and what happens to the maltose when these carbohydrates reach the stomach depends upon several factors—what other types of foods are eaten with the starch, how much food is being eaten and how fast, the emotional condition of the eater and the condition of the eater’s digestive system.

If a relatively uncomplicated starch such as potatoes or yams is eaten alone or with nonstarchy vegetables, and no proteins (as meats, cheese or milk, or even nuts or seeds or acids (as tomatoes, lemon or lemon juice or vinegar—as in salads or salad dressings) are consumed with the starchy food, salivary amylase (ptyalin) can and will continue the digestion of starches and dextrins in the stomach for a long period.

For thorough digestion and consequent good health, this continuation of starch digestion by ptyalin in the stomach is a necessity. Therefore, for good health, it is important to consume starchy foods at separate meals from protein foods and acids. (This and other facts relative to the topic of food combining for good digestion will be discussed in depth in later lessons.)

Briefly stated, ingestion of protein foods causes a secretion of hydrochloric acid in the stomach, and hydrochloric acid destroys ptyalin; that is, it destroys the amylase activity and substitutes acid hydrolysis. Physiology texts state that “if this acid hydrolysis was continued long enough it could reduce all the digestible carbohydrates to the monosaccharide stage. However, the stomach empties itself before this can take place.”

The acids of tomatoes, berries, oranges, grapefruits, lemons, limes, pineapples, sour grapes and other sour fruits and the acid of vinegar will, like hydrochloric acid, destroy our only starch-splitting enzyme, ptyalin. Therefore, these foods also inhibit starch digestion. For good digestion and consequent good health, acids should not be eaten at the same meal with starches.

Another factor that can impair salivary starch digestion is the drinking of water or other liquids with or too soon before or after meals. Water or other liquids do not aid in the digestion of foods. On the contrary, they interfere with digestion by diluting the digestive juices and cause them and their enzymes to be passed through the digestive tract too quickly for digestion to occur.

To summarize this aspect of starch digestion, taking proteins, acids, water or other liquids with starches interferes seriously with their digestion by the salivary amylase, ptyalin. This first stage of starch digestion is of great importance because there is a great likelihood that the food will be acted upon by bacteria and ferment before it reaches the intestine where further starch digestion can take place. Digestion, rather than fermentation and its resulting toxic byproducts, is much more likely to occur soon after the food is put into the mouth than further along in the digestive tract.

From the above, you can see why thorough mastication of food is so important when starches are eaten. No one who seeks health should eat starches in a hurry, nor should they have them with a beverage or with proteins or acids, for good digestion of foods is imperative for good health.

A special note should be made here about glycogen—animal starch. Glycogen should not be consumed by health seekers because much disease results from the ingestion of animal flesh and animal products. This will be discussed in depth in later lessons.

For the purposes of this lesson, suffice it to say that glycogen ingested cannot be digested in the stomach because, of the hydrochloric acid that will be secreted to digest the protein, which is the primary nutritive component of foods that contain glycogen. Therefore, whatever glycogen that is not converted to a disaccharide by the salivary amylase, ptyalin, must be converted in the intestine. The likelihood of the glycogen reaching the intestine without fermenting before it can get there is small. This is just one of the many hazards of consuming animal flesh and animal foods.

Starch Digestion in the Intestine

Now that we have discussed starch digestion by the enzyme ptyalin, let’s get into starch and sugar (disaccharide) digestion in the intestine.

Whatever carbohydrates make it to the intestine quickly enough to escape fermentation by bacterial action will be acted upon in the first part of the small intestine, the duodenum, by pancreatic amylase. This enzyme, secreted by the pancreas, converts any remaining dextrin and starch to maltose. The reason this amylase can act in the intestine is because of the more alkaline medium which prevails there. As stated earlier, amylase must have a somewhat alkaline medium to do its job and is destroyed by acids.

At this stage in the digestive process, that is, after the polysaccharides (starch, dextrin and glycogen) have been converted to the disaccharide maltose, maltose and the other disaccharides (sucrose and lactose) must be converted to monosaccharides since, as stated earlier, the body can absorb and use sugars only as monosaccharides.

This is accomplished by the amylases maltase (to convert maltose), sucrase (to convert sucrose) and lactase (to convert lactose). These amylases are secreted by the wall of the small intestine and are capable of splitting the particular sugars for which they were designed to the monosaccharide stage.

Carbohydrate Absorption

Even though some substances (water, ethyl alcohol, small amounts of monosaccharides) may be absorbed into the bloodstream through the mucosa (mucous membrane) of the stomach, most absorption of the soluble products of digestion occurs in the small intestine. There the absorptive surface is increased about 600 times by villi, which are fingerlike projections in the lining of the small intestine. Each individual villus contains a network of capillaries surrounding a lymph vessel, and each cell on the surface of the villus is made up of smaller units called brush border cells or micro villi.

Substances or nutrients pass through the intestinal membrane through the process of osmosisin one of two ways :

  1. diffusion  
  2. active transport. Substances and nutrients in the intestinal tract that are in higher concentration than across the membrane in the blood and lymph pass through by diffusion. This is a simple osmotic process in which no energy has to be expended. Fructose is absorbed by diffusion.

Active transport is the osmotic process used when substances or nutrients are absorbed from an area of lower concentration across a membrane to an area of higher concentration. This process requires energy for the absorption, as well as a “carrier” to transport the substance.

The carrier substance is thought to be a protein or lipoprotein (a combination of a protein and a fat). Glucose and galactose are absorbed into the bloodstream by active transport. Monosaccharides are absorbed by the capillaries, which empty into the portal vein, which in turn carries them directly to the liver.

Carbohydrate Metabolism

Metabolism is the term used to describe the many chemical changes that occur after the end products of digestion have been absorbed into the body.

There are two phases of metabolism: 

  1. anabolism, which is the chemical reaction by which absorbed nutrients are utilized for replacement of used or worn-out body substances (maintenance) and to create new cellular material (growth)
  2. catabolism, which includes the chemical reactions whereby cellular materials are broken down into smaller units. An example of anabolism is the use of monosaccharides to build up stores of muscle and liver glycogen, and an example of catabolism is the breaking down of these glycogen stores to supply energy to the muscles during physical exersion. Anabolism and catabolism occur simultaneously in the body cells.

Sources of Glucose

The body’s immediate needs determine whether carbohydrates that have been digested and absorbed are used for immediate energy, converted and stored as glycogen or changed to fat and stored in adipose tissue.

Glucose is the principal sugar used by body cells and tissues. It is, therefore, important to know the sources of this nutrient. It may come from carbohydrates or from noncarbohydrate sources.

Following are the four primary sources of glucose :

  1. From the digestion of dietary carbohydrate. Glucose is formed from the digestion of starch, dextrin, maltose, sucrose and lactose from the foods we eat.
  2. From the conversion of fructose and galactose. The three monosaccharides—fructose, galactose and glucose—share the same chemical formula. However, they differ in the arrangement of the hydrogen and oxygen units along the carbon chain. During the metabolic process, the liver cells convert absorbed galactose molecules and some fructose molecules. However, fructose is mainly converted to glucose during its absorption through the intestinal walls, where a metabolic interconversion (mutual conversion) occurs.
  3. From the breakdown of glycogen. When the body’s need for glucose is greater than the supply available in the blood, glycogen reserves in the liver and muscles are broken down and converted to glucose.
  4. From noncarbohydrate sources. If the body cellsrequire more energy than can be supplied by glucose and glycogen reserves, noncarbohydrate sources can be used to supply glucose. The noncarbohydrate sources used include certain amino acids from protein, glycerol from fat and, indirectly, fatty acids from fat.

Regulation of Blood Glucose Concentration

The liver, the pancreas and the adrenal glands play roles in keeping the blood sugar level at a normal concentration of around 90 mg. per 100 ml.

  1. The liver serves as a buffer. As stated earlier in this lesson, absorbed monosaccharides are carried in the portal vein to the liver. This blood in the portal vein may have a very high concentration of sugars, as much as 180 mg per 100 ml of glucose. In the liver, about two-thirds of the excess glucose is removed from circulation. This glucose is converted to glycogen, the storage form of carbohydrate for animals (sometimes called animal starch). At a later time, when the blood sugar level is low, the glycogen is split back into glucose and is transferred out of the liver into the blood.

In essence, the liver serves as a “buffer” organ for blood glucose regulation because it keeps the blood glucose level from rising too high or falling too low.

  • Hormones that regulate the blood sugar level. After a meal is eaten, the increased glucose level in the blood (about one-third of the glucose is not removed from circulation by the liver) stimulates the pancreas to produce the hormone, insulin, which promotes the rapid transport of glucose into the cells, thus decreasing the blood glucose level back toward normal.

    Glucose cannot enter the cells through simple diffusion because the pores of the cell membrane are too small. Therefore, it is transported by a chemical process called facilitated diffusion (also called active transport), in which the glucose combines with a carrier in the cell membrane and is transported to the inside of the cell, where it breaks away from the carrier.

    Insulin greatly enhances this facilitated transport of glucose through the cell membrane. In fact, only a very small amount of glucose can combine with the carrier in the absence of insulin, whereas, in the presence of normal amounts of this hormone, the transfer is accelerated as much as 3-5-fold. (Larger than normal amounts of insulin increase the rapidity of glucose transfer as much as 15-20-fold.) As you can see, insulin controls the rate of glucose metabolism in the body by controlling the entry of glucose into the cells.

    Three hormones are involved in increasing the concentration of glucose in the blood when necessary: norepinephrineepinephrine and glucagon. Norepinephrine and epinephrine are secreted by the adrenal glands and glucagon is secreted by the pancreas. These hormones cause liver glycogen to split into glucose, which is then emptied into the blood. This returns the blood glucose concentration back toward normal.

How Energy is Derived From Glucose

Energy is derived from glucose in one of two basic ways :

  1. by oxidation
  2. by glycolysis. By far the major amount of energy from glucose is released in a series of reactions in the cells in the presence of oxygen; but some energy from glucose is released by a process called glycolysis.
    This is an involved process which does not require the presence of oxygen. (A detailed explanation can be found in a physiology text such as Physiology of the Human Bodyby Arthur C. Guyton, M.D.)

Carbohydrates in Relation to Other Nutrients

Not only are fats converted to carbohydrates for energy when carbohydrate intake is inadequate, but when carbohydrates are consumed beyond need, the excess is converted to fat and stored in adipose tissue. Also, the B-complex vitamins and the mineral calcium are known to play an integral part in carbohydrate metabolism.

  1. The transformation of carbohydrate into fat. Fats and carbohydrates eaten in excess of caloric expenditure are deposited in the adipose tissues as fat. It is, therefore, incorrect to label carbohydrates as being “fattening.” Fats eaten in excess of caloric need are also stored as fat. In the diets of many people, however, carbohydrates comprise the foodstuffs most commonly eaten in excess.

    There are many reasons for this. One reason is because refined sugar and flour are used so heavily and widely in the processing of the foods most widely advertised and distributed to the retail food outlets. Carbohydrates are, as a general rule, less expensive than fat-containing foods (such as cheeses, nuts, many meats, etc.) therefore, they are more likely to be overeaten. In addition, because humans naturally “have a sweet tooth” (because we are biologically frugivores, adapted in nature to eat fruits), we are more attracted to carbohydrates than to fats.

The chemical pathway glucose follows on its way to fat is well understood. You may study this in a good physiology text.

  • The vitamin B complex in carbohydrate nutrition. The importance of the B vitamins in carbohydrate metabolism was discovered because of the health problems that resulted from the industrial processing of foods which removed (and still removes today) the B vitamins from their whole food sources where they were packaged by nature side-by-side with carbohydrates. The large-scale introduction of white (refined) rice in the Orient resulted in beriberi, a vitamin B complex deficiency—specifically, a thiamine deficiency. This phenomenon led to the recognition of the existence of this group of vitamins.

    Prior to the widespread processing of foods, humans did not suffer as a result of their lack of knowledge about the existence of the B vitamins because in nature there is a union between the vitamin B complex and carbohydrates in foods. This union was broken by the industrial processing of foods.

    As will be discussed in greater depth in later lessons, taking vitamin B complex supplements or using so-called “enriched” processed food products will not and cannot substitute for whole foods in their natural state. It is, therefore, very important for health-seekers to consume unprocessed foods—also uncooked, as cooking is an in-home method of food processing that is very destructive of the quantity and quality of vitamins and other nutrients in foods.

    B-complex vitamins are also depleted (and/or not synthesized in the body) when various drugs and medications are taken, most notably birth control pills, alcoholic beverages and antibiotics. Other drugs also deplete B vitamin supplies and/or hinder the synthesis of B vitamins in the intestine. A future lesson will be devoted to the effects of various drugs and medications upon nutrition.

    Physiology texts also mention the fallacy of regarding any one B vitamin in the complex as more important than another because of the fact that the normal chain of events, physiologically speaking, can be broken by a lack of any one of the B vitamins. The texts also recommend a dietary supplement containing all the factors to “avoid the evils of modern food refinement.”

    It is appropriate to make a comment here on this subject: It is fully possible, in fact, easily possible, to “avoid the evils of modern food refinement” much more completely and many times more effectively as far as good (healthful) results are concerned than by eating refined foods and taking supplements.

    Actually, it is not only easily possible and desirable to completely avoid ever eating refined foods, but it is essential for anyone who wants and expects to regain and/or maintain good health. It is not possible to have truly high-level health while continuing to indulge those very practices which undermine it, and eating processed foods and taking food supplements both undermine health.

    Please make special note of the above, for it is one of the most important facts you need to completely understand and accept if you are to bring yourself and your clients to a high level of well-being.

  • Calcium in carbohydrate metabolism. Like the B-complex vitamins, calcium is essential in the metabolism of carbohydrates. When calcium is present in context with the carbohydrate source (whole foods), there are no problems. But, with today’s high consumption of refined foods, lack of natural calcium in these foods creates a myriad of very serious health problems. Refined sugar and flour, as well as rice, breads, packaged cereals and pastas, have been robbed of the calcium in the plant during processing and refining. Even whole-grain products may completely lack calcium because of the destruction of this mineral during the destructive processes of cooking and baking.

    Calcium is taken from the bones and teeth to meet the needs for this important mineral in carbohydrate metabolism. Dental caries, osteoporosis and other bone diseases result.

Sources Of Carbohydrates


Carbohydrates Are a Component of Every Food

As mentioned earlier in this lesson, carbohydrates, along with proteins and fats, form the major components of living matter. They maintain the functional activity of the cells and serve as structural and reserve materials. Carbohydrates provide the primary source of energy for humans.

There is not a single living thing—plant or animal—that does not contain carbohydrates in some form. Though the quantity and form of carbohydrates varies, the presence of carbohydrates as an integral component of life is constant. This means that all foods are potential sources of carbohydrates. However, some foods are better sources than others, and this is what we will discuss now.

Carbohydrates Are a Primary Component of Some Foods

Most foods can be readily classified according to the organic compounds (proteins, carbohydrates, fats, etc.) they contain in greatest abundance. These classifications are not only useful for identifying where to obtain the nutrients we need, but they are also invaluable in selecting compatible food combinations for best digestion and nutrition (to be discussed in depth in a later lesson).

Starches As Sources of Carbohydrates

Starch-containing foods can be divided into four classifications :

  1. Starchy Vegetables 
    All kinds of potatoes are in this classification. Also included are yams, winter squashes (such as buttercup, hubbard and banana squashes), pumpkin, caladium root, taro root, cassava root and Jerusalem artichokes. (Note: Technically, squashes and pumpkins are fruits.)
  2. Mildly starchy vegetables 
    This classification includes carrots, cauliflower, beets, rutabaga and salsify.
  3. Cereal grains
    This includes all cereals, whether they’re whole or refined, raw or cooked. Examples are wheat, rye, barley, rice, millet, buckwheat and oats.
  4. Legumes
    This includes peanuts, lentils, peas and beans.

Fruits As Sources of Carbohydrates

Because some nonsweet foods such as nuts, bell peppers, squashes, cucumbers and tomatoes are technically fruits, fruits can be divided into two classifications :

  1. sweet fruits  
  2. nonsweet fruits. In our discussion of carbohydrates, we will limit our discussion primarily to the sweet fruits, even though the nonsweet fruits do contain some sugar.

For purposes of food combining for digestive compatibility, the sweet fruits can be divided into four groups :

  1. sweet fruits
  2. subacid fruits
  3. acid fruits
  4. melons

The fruits in each category and how to combine them for best digestion will be discussed in a future lesson on correct food combining.

Why Starches Are Less Than Ideal Sources Of Carbohydrates

There are many reasons why starches are less than ideal as sources of carbohydrates for humans.

Many Digestive Steps Use More Body Energy

A larger amount of the body’s limited supply of nerve energy is used up when starches are used for fuel than when fruits are used because starches are, as you know, polysaccharides and must be broken down (digested) into monosaccharides before the body can use them.

Fruits contain a preponderance of monosaccharides, which, as you also know, need no digestion at all. Therefore, fruit eating leaves more of the body’s energies available for other activities. This explains, in part, why people feel so ”light” when they eat fruits and so heavy when they eat beans or bread.

There Is a Greater Tendency to Overeat on Starches

Because starches usually lack the amount of water content found in fresh fruits, it is much easier, to overeat on them than on fruits. It takes larger amounts of starch foods to get the same feeling of fullness that you get from a fruit meal. When starches are consumed, it is best to use only one kind of starch at a meal, as this helps control the tendency to overeat on starches.

Many Digestive Steps Take Longer and Fermentation Can More Readily Occur

For good digestion (an important prerequisite for good nutrition), not only do foods need to be compatibly combined with one another, but they also need to be digested fairly quickly. As stated earlier, food that remains in the stomach too long will be decomposed by the bacteria that reside there.

The only starch-splitting enzyme secreted in the saliva, as previously stated, is ptyalin, also known as salivary amylase. The available amount of this enzyme is somewhat limited, and it is unlikely that large amounts of starch foods can be completely digested by salivary amylase, even if no proteins or acid foods are eaten with or too soon before or after the starches.

Therefore, complete digestion of the starches eaten, especially if more than a very small amount is eaten or if they are eaten with protein or acid foods, is dependent upon the starch-splitting enzymes in the intestine—pancreatic amylase. However, the likelihood of indigested starches reaching the intestine without first fermenting in the stomach because of the action of bacteria there is rather small.

Conditions of emotional or mental stress or anxiety, lack of sleep or rest, eating too fast or a digestive system weakened by years of past abuse are some of the reasons why fermentation may occur before undigested starches can reach the small intestine for digestion by the pancreatic amylase.

Fruits, on the other hand, if eaten with other fruits of like character, pass through the stomach very quickly into the intestine, where their monosaccharide content is rapidly and efficiently absorbed. Unless fruits are eaten with slower-digesting foods such as fat/protein foods (such as nuts, seeds or avocadoes) or starches, they are not likely to ferment in the stomach. Their need for almost no digestion makes it possible for the body to pass them through the digestive tract quickly, before fermentation by bacteria can occur.

Starches Are Poorly Digested Raw But Cooked Starches Are Unwholesome

Only very small amounts of raw starches can be digested because of the nature of the starch granule. Even the most thorough mastication of raw starches breaks open only a small fraction of the starch-containing globules, as each of these globules has a thin but strong protective cellulose covering which acts as a protective membrane for the plant’s storage product (starch).

Neither salivary amylase (ptyalin) nor pancreatic amylase can commence digestion of the starch until it is released from its globule. These starch-containing globules are, therefore, not digested at all and must be eliminated from the body as so much debris. Undigested materials such as these are toxic in the body and pose an eliminative burden without providing energy or other value.

Cooking makes starches more digestible. As stated earlier, starches are not soluble in cold water and need to be heated to break down the cellulose coverings that surround starches. Heat also converts some of the starches to dextrins, and the more and longer heat is applied to the food, the greater will be the amount of starch that is converted to dextrins by this method.

Undextrinized starches which have been freed by heat from their protective globules will be hydrolyzed (digested) by the salivary and pancreatic amylases. The resulting dextrins are large polysaccharide molecules that yield the disaccharide maltose upon hydrolysis. Maltose is, in turn, hydrolyzed into molecules of the monosaccharide, glucose.

Despite the greater digestibility of cooked starches, cooking is a very unwholesome process for many reasons, some of which were mentioned in previous lessons and more of which will be elaborated on in a future lesson dedicated to this subject. Basically, cooking destroys vitamins, partially or completely, depending on which vitamins are involved and how long and hot the cooking is; it converts minerals from their usable organic state back to their unusable (and therefore harmful) inorganic state; and it deranges (or deaminizes) the proteins present. (Starch foods do contain small amounts of protein, as protein is a component of all living matter.)

To summarize, while cooking might improve the digestibility of the starches in starch foods, it certainly does not improve the usability of the other nutrients and components of the food. On the contrary, it renders the minerals and proteins present at least partially toxic and unusable. Therefore, we recommend that neither raw starches nor cooked starches be included as part of an optimum diet.

In the case of legumes such as lentils and beans, however, there is one alternative: sprouting. The starches in legumes are converted in the sprouting process at least partially to dextrins, which can be hydrolyzed by body amylases into the appropriate sugars. Grains which have not been processed (whole grains, in other words) can also be sprouted, but usually with less success because they often sour before their enzymes can complete the conversion of most of the starches to sugars.

The only starch foods we recommend are sprouted lentils, sprouted mung beans or sprouted azuke beans. A later lesson on food preparation will discuss sprouting in more depth.

Starches Are Usually Unpalatable Raw

Because we are physiologically fruit-eaters, most of us are not especially fond of nonsweet foods, at least not compared with how much we love sweet foods. We are not physiological starch eaters, and this is evidenced by our disinterest in foods such as raw potatoes, grains, beans, etc. Most starches just don’t taste that good in their raw state.

Carrots, sweet potatoes and yams are notable exceptions, however, because these tubers, in addition to containing starches, also contain enough sugars to give them a sweet flavor. The main problem with eating these vegetables is that their sugars are likely to ferment in the stomach while they are held up there with the starches, which digest more, slowly than do the sugars. As stated earlier, sugars are normally passed swiftly through the stomach to the intestine for immediate absorption, but if they get held up in the stomach they ferment because of bacterial action. Carrots, sweet potatoes and yams may be used juiced, as long as they are eaten alone or about a half hour before a meal of compatible foods.

Some of us enjoy certain mildly starchy raw vegetables such as cauliflower and carrots. Eaten in moderate amounts, these vegetables are fine. Grated carrots and/or cauliflower flowerettes are nice additions to vegetable salads, but these salads should not contain nuts, seeds or tomatoes, which are poor combinations with even mild starches.

Remember : Although some starches can be sprouted or juiced, and others may be fine in moderation, especially if they’re only mildly starchy, starches are, as a rule, unpalatable and indigestible raw and unwholesome cooked. As stated earlier, humans are not biologically adapted to starch eating.

Some Starch Foods Also Contain a Significant Amount of Protein

A future lesson on food combining will discuss in detail why it is unhealthful to consume starch foods and protein foods in the same meal. Basically, the two kinds of foods require very different digestive environments and enzymes, starch requiring ptyalin and an alkaline digestive environment, and protein requiring the enzyme pepsin and an acid digestive environment.

Both foods cannot be digested simultaneously, and if eaten together or close to the same time, protein digestion will occur, at least partially, leaving the starches and sugars to ferment because of bacterial action in the stomach. Fermentative byproducts interfere with the protein digestion in progress, and protein digestion will most likely be incomplete. Undigested protein will putrefy (rot).

Most foods contain either a predominance of one factor or the other. For example, tubers and grains contain predominately starches, whereas nuts and seeds can be classified as protein/fat foods. But there are some foods which contain a lot of protein along with a lot of starch. Examples of some of these foods are beans of all types, peas and peanuts. Unless these foods are sprouted, which converts their starches to more easily digestible sugars, they are to a large extent indigestible.

This is why beans are often referred to as the “musical fruit.” They ferment and putrefy in the stomach and intestine, and this is an unwholesome occurrence because fermentation and putrefaction byproducts are toxins which must be eliminated as quickly as possible so that the body doesn’t suffer great harm from them. Much body energy is used up in toxin elimination, energy that could be much more wisely used for other activities. Also, not all toxins are eliminated before some harm has resulted.

Wheat Poses Special Problems

Wheat is the most popular of the grains used in this country, especially commercially. But this popularity is undeserved because wheat poses special digestive problems that make it unwholesome. Basically, besides the digestive problems that wheat shares with the other starchy foods, the special problem with wheat is that it contains gluten, a protein substance that humans do not have the enzyme to digest. As you know, undigested substances are toxic in the human body and must be eliminated at a great expense of vital energy.

We might add at this point that beets are a mildly starchy root food that have a special problem: They contain too much oxalic acid which the body neutralizes by binding calcium. We recommend that you not use beets as an item of diet.

Grains and Legumes Are Acid-Forming

A later lesson will discuss in depth which foods are acid-forming and which are alkaline-forming and why we should have a predominance of alkaline-forming foods in our diet. Suffice it to say here that most grains and legumes are acid-forming and, for this reason, should be eaten in extreme moderation, if at all.

Grains contain phytic acid, a substance which binds calcium and iron, both in the grains themselves and the body stores of these minerals. This fact only complicates and aggravates the problem of calcium being taken from the bones and teeth by the body in the metabolism of carbohydrates that have been refined and their minerals, therefore, removed.

Anyone concerned about getting enough calcium should not eat grains. People who suffer with nervousness, sleeplessness and/or cramps may already be experiencing some of the symptoms of calcium deficiency. Getting carbohydrates from fresh fruits, and consuming dark green leafy vegetables, possibly along with a few occasional nuts, seeds and/or avocadoes, will insure adequate intake of usable calcium. Consuming grains in addition to the wholesome foods mentioned above is defeating of your purpose and is to be discouraged.

Why Fruits Are The Ideal Source Of Carbohydrates


Fruits are the ideal source of carbohydrates because they are the foods humans are physiologically and anatomically adapted to eating. (These adaptations will be discussed in greater depth in a later lesson.) Humans have a natural “sweet tooth” because that’s our inherent nature. We’re supposed to eat fruits, mostly sweet fruits. Incidentally, we can enjoy some nuts, seeds, vegetables and sprouts. But sugar-containing fruits should be the primary items in our diet.

The sugars in fruits, being mostly monosaccharides, pass through the stomach and are absorbed through the walls of the intestine without undergoing any digestion. This leaves a great surplus of body energy available for living and all the activities that make living a joy. We should not waste our precious energies digesting complicated, heavy foods unless it’s a matter of life or death. Instead, we should eat simply of our natural foods—fruits—and use our energy for higher-level pursuits of life.

Fruits, except for dates and dried fruits, contain significant amounts of water in its purest and most delicious form. Therefore, they supply most, if not all, of our needs for water. Cooked starches, on the other hand, are water-deficient and make us thirsty, especially if they’re eaten with added salt or soy sauce and/or in very large amounts. Water is an extremely important need of life, and pure water as is in fruits is the only kind we should have. (Distilled water is also acceptable and is, in fact, the only kind of water we should obtain from nonfood sources. The subject of water will be treated in depth in a later lesson.)

Fruits do not have to be cooked or seasoned to taste great. In fact, they should never be cooked, though they can be dried for storage purposes. It is easy to make a meal on fruits, even mono-meals (just one fruit type at a meal), for other foods added to the fruit meal do not enhance it. Fruits are so delicious that they don’t need enhancement and they digest so easily and quickly, eaten with each other or alone, that fermentation and the resulting toxicity of fermentation is unlikely to occur.

Since carbohydrates, quantitatively speaking, are the greatest nutrient need we humans have, it follows that fruits, loaded with sugars, should comprise the bulk of our diet. Fruits, besides being replete with ample carbohydrates, have relatively small amounts of proteins, vitamins and minerals—in just the right amounts for the specific needs of humans. If (anything other than fruits are eaten, it should be small amounts of nonsweet fruits, vegetables, nuts, seeds and sprouts.

Amounts And Variety Of Carbohydrates Needed By Humans

When most people think about amounts of carbohydrates to consume, they think in terms of calories—units for measuring heat. One calorie is the amount of heat required to raise the temperature of one kilogram of water one degree Centigrade. The amount of heat liberated by a complete breakdown of a food into its metabolic end products is expressed in calories.

For purposes of this course, however, calories are unimportant. Obtaining them is important, but numbers are not. Texts say that an average person needs a minimum of 1800 calories per day for just existing and more for any activities indulged. But, as mentioned in an earlier lesson, the variance is so great when it comes to individual needs, and people on conventional high-protein diets that include meat, etc., require so much extra energy to handle the constant input of toxins, causing an additional variance between “norms” and the actual needs of a truly healthy person, that the guidelines in the texts are practically useless. Besides, humans have always been able to get all the calories they need without counting them—and without even knowing about their existence.

So, in this section, we will take a more practical approach to the question of how much carbohydrate we need in our diet.


Because protein, minerals and vitamins are present in sufficient quantities in carbohydrate foods to meet our needs for these nutrients, virtually the entire human diet can consist of carbohydrate foods (fruits). Some individuals, for various reasons, may find it desirable to include some protein/fat foods such as nuts, seeds and/or avocadoes and/or nonsweet fruits and/or vegetables in their diet of sweet fruits.

However, if these foods are eaten, they should not be consumed with, immediately after or less than four hours before sweet fruits—to insure proper digestion of all foods involved and, specifically, to insure that the fruits pass quickly through the stomach to the intestine for absorption rather than getting held up by slower-digesting foods in the stomach and fermenting.

Whether an all-fruit diet is consumed, or other foods are included in the diet, the fact remains that an all-carbohydrate diet will amply supply not only all our energy (carbohydrate) needs, but it will also supply the proteins, fats, vitamins and minerals we need. (Fats are easily obtained by an occasional avocado, a nonsweet [oily] fruit.)


As far as food variety goes, foods grown on different soils in various locations will provide the broadest range of nutrients possible. Eating foods from one locale only, if not organically grown, could result in nutrient deficiencies, especially if only one or a few kinds of foods are consumed. This is probably not a concern for most people in the U.S., however.

While a diet consisting of a broad variety of wholesome natural foods may provide interest and a broad range of nutrients and nutrient combinations, it should be remembered that most foods to which we are biologically adapted contain most of the nutrients we need—in varying amounts.

People worldwide have been known to live in excellent health on diets consisting of primarily or only one or a few foods. Some examples of such foods are coconuts, dates and bananas. There is much proof that a large variety of foods is not necessary for good health, though there is nothing to be said against variety, as long as the foods are wholesome, raw and correctly combined.

Disease Conditions Related To Carbohydrate Consumption


The following plus many more diseases are considered, by the medical world and by some lay people alike, to be either caused by or related to carbohydrates of various kinds in the diet. At this place in this course, we will not delve into any depth on these disease conditions, as they will be treated in separate later lessons. Here we will just briefly mention a few of the more common conditions related to carbohydrate consumption.

Lactose Intolerance

Humans, like the other mammals, provide milk for their young from their mammary glands. This milk is perfectly suited for the very specific needs of the developing human infant, but it is not designed to meet the needs of calves or kids or other baby mammals. It is meant for feeding human infants only.

While the above statement may seem ridiculously obvious, it is not as obvious to many people that human babies should not receive milk from cows or goats except in emergencies where human milk is simply unavailable. In those exceptions, milk from another species of mammal is preferable to no milk at all.

The reason we introduce the subject of lactose intolerance the way we did in the above paragraph is to show two things :

  1. how far we have strayed from nature in feeding cows’ milk to our human babies
  2. that mammary milk is specially created for babies up to three years of age and is not designed for humans above that age.

The idea that we need calcium, fats, proteins or anything else from milk beyond the age of three is not only entirely false and totally ungrounded in fact, but it has caused a tremendous amount of harm and suffering for humans. “How did these ideas get started and popularized so widely, then?” you may ask.

The simple but sad answer is that the, dairy industry is primarily responsible. (This entire subject will be treated in greater depth in a future lesson devoted entirely to the subject of milk and dairy products in the diet.) As incredible as it may seem that so many people would actually put profit before human health, it is, nonetheless, true.

The problem of lactose intolerance is very widespread. The fact that from 18% to 100% of various peoples across the globe exhibit symptoms of lactose intolerance exemplifies the extent of the problems of consuming nature’s formula for calves. Large numbers of people experience symptoms such as abdominal pain, diarrhea and flatulence (excessive formation of gas in the stomach or intestines).

Many so-called allergies, skin disorders, so-called upper respiratory “infections,” hay fevers and numerous other diseases—in fact, all diseases—are caused largely or to some extent by the toxic substances resulting from the inability of most (if not all) humans over age three to utilize the sugar, lactose, found in milk.

After age three, most, if not all, people do not secrete the enzyme, lactase, which is needed to break down the disaccharide, lactose, into the simple sugars, glucose and galactose. As you know, undigested sugars are fermented in the stomach and intestine by bacteria. However, it is not the bacteria that are causing the problem, for they are doing what their role in nature requires of them. The bacteria simply play their part in preparing the offending substance, in this case, lactose, for elimination from the body. The cause of the problem is the ingestion of food not appropriate for humans over three.

The solution is obvious and simple, but the powerful and influential dairy industry will do (and does) everything it can to keep this information a secret and to try to disprove it. Besides this, governments are on the side of industry, and individuals in government who can’t be coerced to change are removed from positions that enable them to act in favor of human health.

It is a common misconception that the overall health of people is more dependent upon maintaining the jobs and industries that are now in operation than maintaining physical health. Too many people like to think that the connection between eating wrong foods and disease conditions of all kinds is only vague and questionable, when, in fact, the connection is very direct and the solution very simple.

People like to think that some vitamin, some drug or some other kind of treatment will “cure” diseases and alleviate symptoms. Then they can go on indulging unhealthful practices and not disturb the status quo. But there is just no getting around the fact that, if we are to have better health, we must change our eating and living practices. No so-called “cures” or other treatments can even approach “making up for” healthful living. To try to do so is a futile effort. Change is really not so difficult if more people could just accept the idea that it is necessary and beneficial to everyone, both in the long run and in the short run.

To get back to the subject of lactose intolerance, can you see why most or all people do not digest lactose? Milk is not a natural or wholesome food for humans over age three; neither are other dairy products. While not everyone exhibits the clinical symptoms of lactose intolerance, the health of everyone suffers in some way as a result of milk consumption—if they drink milk or otherwise use milk or dairy products.

As stated earlier, the problems of milk and dairy products in the diet will be discussed in much greater depth in a future lesson on the subject.

One more item might be added here before we close this subject: Texts say that milk to which the enzyme lactase has been added and fermented dairy products are tolerated by lactose intolerant people. They list foods such as yogurt, buttermilk and cottage cheese. Suffice it to say here that all dairy foods are very unhealthful, including those listed above, and many symptoms other than those of lactose intolerance result from the consumption of unwholesome foods.


Galactosemia is another disease condition related to milk, or lactose, consumption. This disorder, labeled “an unusual hereditary disorder,” occurs in infants. Galactosemia is among the diseases that supposedly result from “inborn errors of metabolism.” In this condition, a specific enzyme (p-galactose-uridyl-transferase) is lacking, so the infant cannot properly digest the sugars in milk. Specifically, the monosaccharide galactose, which does not occur free in nature but results from the hydrolization of lactose from milk, cannot be converted to glucose.

Infants with this disorder vomit when they’re fed milk and other dairy foods. They become lethargic and fail to gain weight. Their liver and spleen become enlarged (from overwork), cataracts develop and they become mentally retarded. In severe cases, death can occur. The solution to this problem is a milk- (and other dairy products) free diet, according to the texts.

What is fed to babies instead of milk is not listed, but we would recommend freshly-made fruit juices in season, perhaps along with (at separate feedings, of course) homemade nut, seed or soy milk, depending upon the infant’s tolerance to these. (The subject of care and feeding of infants and children will be treated in more depth in later lessons.)

Dental Caries

Dental decay is generally attributed to the consumption of too much sugar. However, the sugars in fresh ripe fruits, even in very sweet fruits such as dates and dried fruits, will never cause dental decay. The reason for this is that it is not sugar itself that causes cavities; rather, it is the consumption of refined sugars and other refined foods, such as refined flours and white or polished rice, that results in dental caries. The consumption of meats, dairy foods and other acid-forming foods in great excess of alkaline foods (fruits and vegetables in their raw state) is also an important contributing factor to dental decay.

As mentioned earlier in this lesson, calcium is needed in the metabolism of carbohydrates. Refined foods lack minerals, including calcium. The body is forced to draw calcium from its own reserves, and these reserves are depleted rather quickly if refined foods are eaten more than “once in a blue moon.” If this occurs, the body must then draw the needed calcium from its bones and teeth—hence, cavities!

Meats and dairy foods, as well as whole grains, are acid-forming in the body. Calcium is needed to neutralize the acidity and maintain the normal blood alkalinity of 7.40 pH. After the calcium available in the body is used up, this mineral is taken from the bones and teeth.

As you can see, fruits are to be preferred over grains, meats, milk or dairy foods as sources of carbohydrates. Their sugars will not cause cavities, but fragmented foods (refined products) and unnatural foods (meats, milk, dairy, grains) will! From the standpoint of maintaining body calcium, the best choices of starch foods would be the tubers—potatoes, sweet potatoes, yams, and carrots.

No one ever need fear dental decay, even on a diet of sweet fruits. The important factor here is not to eat processed or refined foods or foods that are not suited to our biological adaptations. (The subject of sugar and other sweeteners will be treated in greater depth in a future lesson.)


This condition is also known as low blood sugar and is often a predecessor to diabetes. It, too, will be treated in depth in a future lesson, so we will say little about it here. True hypoglycemia is caused by the same things as cause diabetes. However, people are often diagnosed as hypoglycemic when, in fact, they just have a case of body toxicity. The symptoms of hypoglycemia are many and can also occur when a person is not actually suffering from this condition—hence, the incorrect diagnoses in many cases.

Contrary to popular opinion, most hypoglycemics can fast and benefit greatly by it. Since so many people suffer with this condition, this is good news indeed!

Frequently Asked Questions

What do the words Natural, Unnatural, Normal, and Abnormal really mean?

Natural or normal is that to which we became accustomed while living in a pristine state of nature and that to which our bodies were adapted. That which is contrary to our adaptations, that is, to our biological heritage, is abnormal and unnatural.

Would you say carnivores are biologically adapted to meat-eating because of the structure of their teeth and other body structures?

Yes, I’d say that. Animals that live primarily upon meat have developed the tools or faculties for securing their food supply and best digesting it for their physiological needs. Animals that have claws and fangs are usually carnivores.

Are we adapting to our present environment?

Probably, but not perceptibly. A social adaptation or accommodation is not physiological and anatomical adaptation. Biological adaptations are slow and often require hundreds of thousands of years to come about. For example, when humans started eating meat, they did not during all their meat-eating days over a period of several thousand years develop fangs, claws, or the concentrated hydrochloric acid solution that characterizes meat-eating animals. You need but look at Eskimos to see confirmation of this. Animals adapt very slowly to changed conditions. On the other hand if there is a failure to adapt or the change is too quick, the danger of extinction exists.

In nature there are checks and balances. Isn’t something like the black plague a natural check on the population?

No. In nature there are no such things as checks and balances in that context. In normal circumstances there are periods of famine and periods of feast. When there’s famine, death overtakes many of the organisms that are victims of the scarcity. When there’s a feast, a rapid multiplication occurs. Organisms in nature live in symbiosis with each other and a balance exists amongst them according to the food chain. For instance, if you study and witness insect hordes, you’ll learn that when they are thriving on abundant vegetation there is a corresponding increase in their predators, that is, birds and other animals that feed upon insects. When the insect population is practically wiped out the predators decline in numbers. These are the only kinds of checks and balances that exist in nature. Nothing can exceed its possibilities.

What you call calamities cannot be in any sense referred to as natural. A plague or any sickness or disease is not natural. It happens because an organism has lived contrary to the laws or principles that apply to its life. When we contravene the laws of our existence, we will incur disease. Diseases or plagues are in no sense checks and balances. If humans live in pathogenic perversions they’ll develop diseases and die amidst plenteousness.

What is your opinion of holistic health?

Those who are striving for something better than the medical system with which they’ve become disillusioned must be admired for both their perspicacity and their courage in undertaking an independent course. We Hygienists may not agree with the course or courses they’ve chosen as an alternative, but we hold they have every right to pursue it as is their bent and persuasion.

The word “holistic” derives from the word “health” which, again, means “whole,” “complete,” or possessing fullness of function. The word “holy” also derives from the word whole or healthy, although we have lost sight of this.

What we call “holistic health” in current society is a catchall of all modalities. The term is a tautology. It’s like saying “healthy health.” But the holistic movement involves M.D.’s, homeopaths, chiropractors, osteopaths, naturopaths, herbologists, acupuncturists, polarity therapists, foot reflexologists, and just about anything else that attaches itself to the movement. The holistic health movement embraces anyone who wants to join it.

Hygienists who bring their philosophy with them are not accepted in the holistic movement. To be accepted into the movement you must be of a “curing” frame of mind, that is, basically medically oriented. This movement is therapy-oriented rather than health-oriented. However, some of the practitioners in the movement, notably the naturopaths, do recognize that we must remove the causes of disease in order to establish a basis for health. Even some chiropractors are enlightened in this regard. There are, in fact, practitioners in all schools that recognize the real needs of the human organism and advise their clients of these needs.

We call ourselves wholistic. To us this means that we embrace every facet or condition that touches upon human welfare. In the sense that we recognize that health is realized only by the length and breadth of the living regime, we’re wholistic. But we do not identify with the current movement that calls itself holistic.

I think you’re wrong about all healing being self-healing. I’ve personally seen a woman who had a leg ulcer for over a year. Topical application of comfrey poultices healed it in less than ten days. How can you deny that?

I do not deny that the leg ulcer healed, and I do not deny that the comfrey poultice was the agency that precipitated the healing process of the leg ulcer. But the body is probably worse, not better for the treatment.

What happens physiologically to cause the ulcer in the first place? Why do they sometimes persist only to heal later? What happens when the agency of toxic materials such as in garlic, aloe, comfrey, or in pharmacological preparations are applied and the ulcer is healed?

The comfrey poultice neither caused nor healed the ulcer. The body created the ulcer in the first place just as it creates a boil, fever, pimple, or other so-called infection. The body creates these conditions as outlets for an extraordinary load of toxic materials. As long as the body is burdened with toxicity that it cannot eliminate through normal channels, it will utilize vicarious outlets, i.e., outlets other than normal. 

As long as the practices introduce into the body toxic materials and the sufferer’s habits are such as to cause the body to retain its own metabolic wastes, then the body will protect itself against a death-dealing situation by getting rid of its problems any way it can.

An ulcer is created in two ways. First, a lesion can be created by the body through self-autolyzation of its tissues. The body causes the self-digestion of a hole to the surface in the case of a boil or pimple. It is the body that forces toxic materials into the hole it has created to the surface. It is the body that creates the tremendous pressure necessary to keep the pus and debris near the surface in the form of a boil until drainage or expulsion occurs.

Just so it is the body that causes the ulcer in one way or another. Probably the leg ulcer was caused by the body’s collection and concentration of poisons in a given area until the cells and tissues of the area were totally destroyed. Then the body utilizes the open sore as a drainage outlet much as a teakettle will discharge its steam through a blown hole after the hole is blown. 

When aloe vera, comfrey, or certain pharmaceutical preparations are applied, they do not solve the body’s problems. Herbs and drugs have not the intelligence or power to create cells and new tissue to bridge the chasm or gulf that constitutes the ulcer or lesion.

What happens is that the poultice or drug application applied to an open sore poses a new danger. Absorption of poisons from the outside causes the body to change strategy. Where it had been exuding poisons to keep them low, the body is now absorbing poisons there. To obviate this new threat the body closes up the dumping ground and seals it off from the outside by scarring it over.

Though the body healed the ulcer, it is now worse off than before. It is retaining the toxic material previously expelled through the open sore or ulcer. Either it must now create a new extraordinary outlet or suffer the retention of the toxic materials it previously expelled
through the ulcer.

Had the ulcer sufferer fasted, the ulcer would have healed more quickly than with the application of a poultice. Moreover, the body would, under the fasting condition, be free of the input of toxic materials and toxigenesis due to enervating habits. Under this condition it can accelerate expulsion of toxic materials through regular channels. 

Once the level of toxicity has been reduced below a certain tolerance level, the body will promptly proceed to heal the ulcer. Healing takes place much more quickly under the fasting condition than any other. While fasting, the body can concentrate its energies and its material resources to the healing process, thus affecting healing much more speedily.

So, the comfrey poultice did not do anything other than become a source of irritation. The body “closed up shop,” so to speak, at the ulcer site and did business elsewhere. Keep in mind that all healing is a body process and never that of drugs. And let us not mistake the drug nature of comfrey. It contains pyrrholizidine and allantoin, two quite toxic alkaloids or glycosides.

Are you telling us we’d get along better without doctors and healers? Does not nature furnish natural remedies for our problems?

I just furnished an example of the physiological modus operandi of the body under the influence of toxic materials. I had hoped that would suffice to dispel any ideas that healing can be effected by extraneous agencies.

Yes, we would be better off without physicians, miscalled doctors, and so-called healers. We do need teachers to help people see their errors concerning health. We need teachers to get them on the right biological track so they can lead healthy and happy lives. Nature never developed humans or other animals so that remedies are needed in the first place, and it never created remedies in the second place. These interpretations errant humans have ascribed to disease and healing phenomena are based on illusory appearances. The only remedy for any ailment is the capacity of the body to right itself once the assault upon it has been discontinued.

Aren’t diseases caused by germs and viruses? Surely you can’t mean that millions of physicians the world over are wrong about this?

We’ll get into the depths of these matters in subsequent lessons. But the answer is no: germs do not cause disease. They can, at worst, complicate them secondarily. Bacteria are our symbiotic partners in life. Partners accommodate each other for mutual benefit. Viruses as an entitative existence are a medical myth. If diseases are caused by uneliminated metabolic debris, which is what so-called viruses are, then the medics have a point.

But we Hygienists call that metabolic debris retained wastes, not viruses. “Viruses” are nothing more than the proteinacious debris of spent cells.  Their accumulation can precipitate a  healing crisis in the body. When this occurs, the body is likely to transport bacteria to the scene to aid it in cleaning up the mess, but the bacteria did not cause the problem.

The habits and practices of the sufferer must be looked to as the real culprits. Once these deleterious habits and practices are discontinued, there will be no further toxic accumulations and thus the need for disease or healing crises will cease to exist. Sickness-free health will exist thereafter.

You say that disease is abnormal. Everyone has been sick at some time or other. Haven’t you ever been sick? If everyone gets sick, wouldn’t you say getting sick is a rather normal thing?

Yes, it is undeniable that disease and sickness are normal in our society. That is one reason there’s a great need for enlightened Life Scientists to be on the scene. We can put an end to this misery.

Let us not, however, confuse what is normal in nature and what is normal in a vitiated society.

Disease is a normal body response to an abnormal toxic condition. But the toxic condition is, let us recognize, abnormal.

You talk about Life Science as a cure-all. Aspirin will cure a headache, at least for a while. Can Life Science cure a headache?

Those practices which, aggregately, we term Life Science, are, indeed, a panacea, a cure-all. Correct diet and health practices build health, not disease. Aspirin does not “cure a headache.” The problems remain as before plus the toxic presence of the aspirin itself. Aspirin merely causes our body to paralyze or incapacitate the nervous system.

Just because you remove thermometers does not alter the temperature. The fact that the body finally expels the aspirin from its domain and reinstitutes the processes that give rise to another headache is ample indication that drugs solve no problems.

Under the Life Science regime all causes of headaches are removed. Causes of health are instituted. This is the ultimate solution to the problem of disease and suffering. When there are no causes there can be no disease. When only the causes of health are indulged, only health can result.

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *